Salmonella

Modified with permission from a slide set by

Bhushan Jayarao
Extension Veterinarian
Department of Veterinary Science
Pennsylvania State University
University Park, PA
What’s Salmonella?

- Salmonella is a bacteria
 - Rod shaped
 - Appears pink to red when stained with Gram’s stain (Gram-negative)

- Belongs to a family; *Enterobacteriaceae* (intestinal bacteria)
 - Salmonella (genus)
 - enterica (species)
 - serotype (over 2200 serotypes)

Example: *Salmonella enterica* serotype Dublin S. Dublin
Where does Salmonella come from?

- Inhabitant of intestinal tract of:
 - animals
 - birds
 - reptiles
 - insects

Host adapted:
- Human: S. Typhi
- Cattle: S. Dublin
- Poultry: S. Pullorum
- Pigs: S. Choleraesuis

Non host adapted:
- S. Typhimurium
 - and others
What’s Salmonellosis?

- clinical illness in animals or human beings caused by Salmonella sp.

Is Salmonella communicable between animals and humans?

YES!

- Human outbreaks of Salmonellosis in the United States are frequently associated with food products of animal origin including eggs, meat, milk and milk products.

38 Outbreaks, 14 (37%) traced to products of bovine origin!
Salmonella in Cattle

- **Magnitude of the problem**
 - National survey
 - 2.1% fecal samples from 7.4% of farms
 - Cull dairy cows
 - 4.6% of cull cows (Washington State)
 - Neonatal calves
 - Ohio- 4.8% farms; California- 16 % farms
 - Missing information
 - Estimates of economic losses
 - calf and adult cattle
 - milk production
 - contaminated raw bulk tank milk

Wisconsin --- 4.7%
Tennessee --- 8.9%
South Dakota - 6.1%
Bovine Salmonellosis

- Common serotypes isolated from cattle in the United States
 - S. Dublin - (group ‘D’) -------------- Most common
 - S. Typhimurium - (group ‘B’) ---
 - S. Newport - C
 - S. Muenster - E
 - S. Saintpaul - B
 - S. Anatum - E
 - S. Kentucky - C
 - S. Montevideo - C
How does Salmonella enter a farm?

Most important sources of infection:
- Replacement heifer/cows
- Calves
- Trucks
- Birds/pests
- Feed
- Water
- Visitors
Other routes of entry
Salmonella & host interaction

Contaminated
feed
water
feces
colostrum / milk

Animal

Salmonella
Environment

Intestine

Microscopic picture of small intestine

OUTCOME ?
Outcome of an Salmonella infection

No clinical signs

- No Salmonella in feces and milk
- Salmonella infrequently present feces and or milk
 - SYMPTOMLESS CARRIER

Salmonella present in the body but not excreted
 - LATENT CARRIER

Salmonella in feces and or milk
 - ACTIVE CARRIER

Clinical symptoms
- Fever, diarrhea, bloody stool, dehydration, anorexia/ emaciation rapid breathing, sloughing of skin from extremities

death

recover
Salmonella carriers?

- Animals with Salmonella infection that
appear healthy and show no signs of
disease make

detection

diagnosis

prevention and control

one of the most difficult tasks to achieve
and provide the greatest challenges to the
animal health industry.
Salmonella Infection

- Detection
 - isolation from pooled samples from high risk individuals
 - repeated sampling to detect subclinical carriers

- Diagnosis - culture based
 - complete typing of isolates
 - Serology limited except for S Dublin carriers and to determine exposure to other serotypes
ONE: Infection on a farm is maintained primarily by transmission of Salmonella from feces of infected animals to mouths of susceptible animals.

ACTION: Break the links in the chain by minimizing opportunity for fecal contamination of feedstuffs, feeding surfaces, water troughs and equipment.

TWO: Salmonella infection & subsequent clinical disease is a result of:

- **ACTION**: Maximize host resistance by paying careful attention to the transition of susceptible animals (periparturient cows, newborn calves).

<table>
<thead>
<tr>
<th>Organism</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>* serotype</td>
<td>* age</td>
</tr>
<tr>
<td>* virulence</td>
<td>* immunity</td>
</tr>
<tr>
<td>* No. of organisms</td>
<td>* nutrition</td>
</tr>
<tr>
<td></td>
<td>* prior exposure</td>
</tr>
<tr>
<td></td>
<td>* stress</td>
</tr>
</tbody>
</table>
THREE: Salmonella infects anything in the livestock environment that has an intestinal tract:

ACTION: Initiate control programs

1. Rodent proof and bird proof feed storage
2. Remove nesting and roosting opportunities
3. Restrict access by pets and feral cats
FOUR: Majority of Salmonella infections in a herd over a period of time are symptomless.

Clinical infections are only the tip of the iceberg, even during clinical outbreaks of disease.

ACTION: in an outbreak handle all animals as if they were shedding not just the sick ones. Reduce water and feed contamination.

Clinical
Normal
Subclinical
FIVE: Septicemic animals shed Salmonella through saliva, nasal secretions, urine, milk and feces without enteric signs

- Such animals pose a great threat in controlling spread of Salmonella infection as they contaminate
 - water bowls
 - nipples
 - oral treatment equipment (balling guns, esophageal feeders)
 - human hands

- **ACTION:** Clean all equipment with Chlorhexidine (3 oz. / gal) and other items such as boots and mats with orthophenylenol.
SIX:
Salmonella are usually killed by exposure to the volatile fatty acids of fully functional normal rumens

ACTION: Maximize rumen function by maximizing a consistent dry matter intake in periparturient and early fresh cows
SEVEN: Salmonella survives for long periods under conditions common on the livestock farm

- **Colostrum**
 - 30°C, 2 to 5 weeks.
 - 5°C to 11°C, for ~10 days, low pH will reduce the number of Salmonella

- Pasture and soil ---- 200 days
- Garden soil ---- 251 days
- Liquid manure --- 27 days (S. Dublin), --- 286 days (S. Anatum)
- Slurry - 84 to 250 days
- Infected feces stored in cans - 159 days (S. Dublin)
EIGHT: People who are at risk of illness

- Farm workers and Visitors
 - Expectant mothers handling sick animals
 - Working with sick calves and cows
 - Poor personal hygiene
 - Consuming raw bulk tank milk
 - Avoid fecal and salivary contact!

- Public - Consumers
 - Consuming raw milk, fresh cheese made of raw milk.
NINE: Personal hygiene practices on farm

Wash hands with soap and water
A must before and after:
1. Attending sick calves and animals
2. Milking cows (also wear gloves)
3. Manure handling

Dress and boots
1. Change into farm boots on the farm
2. Wash farm boots regularly
3. Leave farm boots on the farm
4. Wash and disinfect farm clothes

IF available: shower before leaving the farm

DO NOT drink raw milk
Salmonella Typhimurium DT 104

- Emerging foodborne pathogen
- Detected in several countries
- **Why is DT 104 of concern?**
 - Multiple antibiotic resistance
 - Ampicillin
 - Chloramphenicol
 - Streptomycin
 - Sulfonamides
 - Tetracycline
- DT 104 has been isolated from:
 - poultry, swine, **cattle** and wild animals
United States

◆ Humans

◆ Cattle (Northwest)
 ✦ DT 104: No isolations till 1986
 • 13% --- 1986 to 1991
 • 64% ---1991 to 1996

■ Outbreaks (human) in the US:
 ◆ 4 (3 - west coast, 1 - east coast)
 ✦ ALL 4 OUTBREAKS LINKED TO UNPASTEURIZED DAIRY PRODUCTS
 ✦ SOURCE OF DT 104 IN TWO OUTBREAKS, TRACED TO DAIRY FARMS
No unique control methods available for S. Typhimurium DT 104 in animals.

Control measures that are effective against other types of Salmonella will reduce the likelihood of transmission of S. Typhimurium DT 104.
Cattle in dealer premises were at increased risk of disease (Odds ratio 14.25)

Introduction of newly purchased cattle (4 weeks after purchase) to the farm increases the risk of disease (OR 2.51)

Purchase via dealers was at high risk as compared with purchasing stock directly from other farms (OR 3.90)

Risk factors for Salmonella Typhimurium DT 104

- **Persistently contaminated buildings** may be a source of infection (OR 2.48)

- **Lack of isolation facilities** for ill animals was associated with an increased risk of disease
 - In particular; if cows calved in buildings that previously housed diseased stock (OR 1.51)

- **A high population density of cats** around the farm increased the risk of infection (OR 1.35)

- **Evidence of access to cattle feed stores by wild birds** was associated with an increased risk of disease (OR 1.67)
Risk factors for Salmonella Typhimurium DT 104

Risk factors over which the **dairy producer** can exert control:

1. **Purchasing replacement stock** from direct sources rather than a dealer
2. **Quarantine of purchased cattle** for a 4 week period
3. **Housing sick animals** in dedicated isolation areas
4. **Preventing wild bird access** to cattle feed stores
5. **Vaccination**
Typical Scenario-1

OUTBREAK

• Newly assembled herd, animals from unknown source, or from a dealer
• High morbidity (at least 40 - 60% in the herd infected)
• Drop in milk production, ~10%, high risk of bulk tank milk contamination
• Typically observed with S. Typhimurium, lasts 2-4 weeks
• Samples taken during outbreak show extensive herd contamination
• Samples collected 4-6 weeks later, most of which test negative
• Subsequent outbreaks or infections may be sporadic, or may go unnoticed
Typical Scenario-2

- **Recurrent Salmonella infection in calves and cows**
 - Cycling of Salmonella in a herd
 - Typically seen with Salmonella group D and group E
 - Presence of animal reservoir or extensive environmental contamination
 - **Hot spots**: Maternity area, calf housing areas, watering troughs
 - Identify carriers, massive environmental cleanup, put in place appropriate management practices.
Other Scenarios...

- Pre-fresh and or fresh cows sick
- Calves and cows you recently sold caused Salmonellosis
- Salmonella detected in milk filters and bulk tank milk
- Family member diagnosed with Salmonellosis after drinking raw milk
- Recurrent diarrhea and loss of calves
Strategies for Prevention and Control of Salmonellosis
Principles of Salmonella Control on Dairy Farms

- Reduce exposure
 - Biosecurity - incoming animals and between groups
 - Prevent fecal-oral and salivary transmission
 - Avoid use of waste milk for calves
 - Feed and water biosecurity
 - Rodent and bird control
Principles of Salmonella Control on Dairy Farms

- Maximize immune status
- Minimize stressors
- Maximize feed intake in the periparturient period.
- Implement a sound general herd vaccination program
Principles of Salmonella Control on Dairy Farms

- Control measures during a Salmonella outbreak
 - Identify and isolate sick animals
 - If possible, identify source of bacteria, and eliminate
 - Institute hygiene measures (fecal-oral, salivary, milk spread)
 - Vaccination?
 - Treatment of infected animals?
Control measures during a Salmonella outbreak

- Human health precautions during a Salmonella outbreak
 - Avoid exposure of young, old, or immune compromised people
 - Limit number of people handling sick animals
 - Avoid having same people handle sick and well animals

- Hygienic measures
 - foot bath
 - handwash
 - separate clothes/footwear for sick animal handling

- Prevent pet animal exposure to cattle
- DON’T DRINK RAW MILK FROM AFFECTED FARM
NYSCHAP gives a special thanks to **Bhushan Jayarao from Penn. State University** for use of these slides.

(with some modifications by Stehman and McDonough, Cornell)